УДК: 612.821.76+616.8-009.836

Кабаченко Вероника Александровна, студент, 4 курс, стоматологический факультет, Институт «Медицинская академия имени С. И. Георгиевского» ФГАОУ ВО «КФУ им. В. И. Вернадского», г. Симферополь, Россия

e-mail: kabachenko.20121@gmail.com

Халилова Арзы Сервер кызы, студент, 3 курс, стоматологический факультет, Институт «Медицинская академия имени С. И. Георгиевского» ФГАОУ ВО «КФУ им. В. И. Вернадского», г. Симферополь, Россия

e-mail: arzykhalilovaa@gmail.com

Полещук Ольга Юрьевна, кандидат медицинских наук, доцент, Институт «Медицинская академия имени С. И. Георгиевского» ФГАОУ ВО «КФУ им. В. И. Вернадского», г. Симферополь, Россия

e-mail: pol.o.u@inbox.ru

Каладзе Кирилл Николаевич, кандидат медицинских наук, доцент, Институт «Медицинская академия имени С. И. Георгиевского» ФГАОУ ВО «КФУ им. В. И. Вернадского», г. Симферополь, Россия

e-mail: kirill0905@inbox.ru

Лукаш Александр Сергеевич, ассистент, Институт «Медицинская академия имени С. И. Георгиевского» ФГАОУ ВО «КФУ им. В. И. Вернадского», г. Симферополь, Россия

e-mail: lukashasssss@gmail.com

ВЛИЯНИЕ СНА НА ПСИХОФИЗИЧЕСКУЮ И УМСТВЕННУЮ АКТИВНОСТЬ У СТУДЕНТОВ СТОМАТОЛОГИЧЕСКОГО ФАКУЛЬТЕТА

Аннотация: проведено исследование среди 90 студентов стоматологического факультета. Установлены изменения, происходящие с количеством и качеством их сна во время дистанционного обучения. Дана информация об основных физиологических аспектах такого процесса как сон.

Ключевые слова: сон, психофизическая активность, умственная активность, дистанционное обучение, студенты-медики, студенты-стоматологи.

Kabachenko V. A., student of the faculty of dentistry, Institute "Medical Academy named after S.I. Georgievsky" of Vernadsky CFU, Simferopol, Russia

e-mail: kabachenko.20121@gmail.com

Khalilova A. S., student of the faculty of dentistry, Institute "Medical Academy named after S.I. Georgievsky" of Vernadsky CFU, Simferopol, Russia

e-mail: arzykhalilovaa@gmail.com

Poleshchuk O. Yu., Candidate of Medical Sciences, associate professor, Institute "Medical Academy named after S.I. Georgievsky" of Vernadsky CFU, Simferopol, Russia e-mail: pol.o.u@inbox.ru

Kaladze K. N., Candidate of Medical Sciences, associate professor, Institute "Medical Academy named after S.I. Georgievsky" of Vernadsky CFU, Simferopol, Russia e-mail: kirill0905@inbox.ru

Lukash A. S., Assistant, Institute "Medical Academy named after S.I. Georgievsky" of Vernadsky CFU, Simferopol, Russia

e-mail: lukashasssss@gmail.com

IMPACT OF SLEEP ON PSYCHOPHYSICAL AND MENTAL HEALTH IN DENTAL STUDENTS

Annotation: a study was conducted among 90 students of the Faculty of Dentistry. The changes that occur with the quantity and quality of their sleep during distance learning have been established. The basic physiological aspects of such a process as sleep are given.

Key words: sleep, psychophysical activity, mental activity, distance learning, medical students, dental students.

Введение. Сон представляет собой физиологический процесс, который характеризует пребывание организма человека в состоянии пониженной реактивности на внешние раздражители, при котором уровень мозговой активности достигает минимальных значений. В основе этого сложного и неоднородного состояния лежат меняющиеся нейрофизиологические и биохимические реакции.

Серьезные достижения последнего десятилетия в различных областях нейрофизиологии человека, благодаря существенному совершенствованию методических возможностей, в значительной степени способствовали углублению представлений о механизмах сна в норме и при его нарушениях.

В соответствии с логикой развития науки, возникли новые вопросы, касающиеся анализа закономерностей становления процессов регуляции цикла бодрствование—сон, и появились новые аргументы для объяснения уже давно известных феноменов, характеризующих изменения мозговой деятельности в зависимости от состояния организма.

Влияние качества и продолжительности сна на повседневную деятельность человека невозможно преувеличить. Отсутствие полноценного сна будет сказываться на когнитивной сфере, психофизическом состоянии, эмоционально-волевой сфере человека, что, в свою очередь, приведет к негативным последствиям в виде возникновения проблем в коммуникативной сфере человека, а значит и невозможности осуществления полноценной трудовой деятельности.

Вышеперечисленные факторы обуславливают актуальность данной исследовательской работы.

Мозг представляет собой удивительно сложную систему, в которой модели деятельности находятся в почти критической точке между порядком и хаосом, объединяя входящие данные различных модальностей в единый опыт мира. Последние научные теории сознания обратились к этим характеристикам, чтобы объяснить, как разнообразный репертуар человеческих сознательных переживаний возникает из функций мозга.

В частности, считается, что сознание требует трансляции информации по всему мозгу через «глобальное рабочее пространство», в рамках которого процессы отдельных компонентов интегрируются и становятся доступными для выполнения более высоких когнитивных функций, создавая унитарный опыт [1].

Человеческое сознание опирается на пространственно-временные взаимодействия между интеграцией мозга и функциональным разнообразием, разрушение которых может представлять собой универсальный биомаркер потери сознания с потенциальной значимостью для клинической практики. Один из главных вопросов, волновавших физиологов еще со времен И.П.Павлова — это существование в мозге «центра сна».

Организм человека обладает определенным запасом физических и психоэмоциональных возможностей, которые нуждаются в восстановлении, осуществляющемся именно в процессе сна. Многочисленные отрицательные изменения образа жизни и экономико-социальной среды современного человека обуславливают высокую частоту распространенности в обществе случаев ухудшения качества сна и сокращение его общей продолжительности [2].

В теории информации энтропия количественно определяет разнообразие или непредсказуемость информационного контента. Используя энтропию различных аспектов функции мозга для оценки разнообразия информации, различные исследования показали снижение энтропии при ослаблении сознания, например, во время сна или анестезии и, в последнее время, также у пациентов с нарушениями сознания. И наоборот, энтропия увеличивается во время состояний предположительно улучшенного сознания, вызванного психоделиками, что подтверждает идею о том, что энтропия, измеренная на основе функциональной визуализации, может отражать богатство И разнообразие сознательных переживаний [3, 5].

У бодрствующих здоровых добровольцев динамика функциональной связности мозга переходила между состояниями, демонстрирующими более

высокую сегрегацию или интеграцию, причем последние связаны с более высоким возбуждением и улучшением когнитивных функций. Таким образом, взаимодействие энтропии мозга и интеграции в поддержку сознания может происходить как во времени, так и в пространстве [4].

Прицельное исследование нейронов, участвующих в регуляции цикла сон-бодрствование, выявило, ЧТО только при наличии активирующих импульсов, оказывающих мощное воздействие на таламокортикальную систему мозга, возможно функционирование всего спектра сознательной деятельности человека во время бодрствования. В результате такого воздействия происходит деполяризация нейронов коры головного мозга, которая дает этим нейронам способность осуществлять анализ полученной информации и формировать ответную реакцию на приходящие от других нервных клеток к ним сигналы [12]. Условно такие системы активации головного мозга можно называть бодрствования». Они располагаются базальных «центрами В ретикулярной формации ствола, в заднем гипоталамусе, в области дорсальных синего пятна. Нарушение функционирования одной ядер шва перечисленных систем у человека ведет к состоянию, которое с сознанием несовместимо, так как ЭТОТ процесс не представляется возможным скомпенсировать за счет других нервных центров.

Вполне логично высказать предположение о том, ЧТО существование контрфункционирующих структур, то есть, «центров сна». Но в результате проведенных ранее исследований, ученые детально изучили нейрон коры и выяснили, что существуют нервные клетки, осуществляющих функцию торможения активирующих нейронов. Они представляют собой механизмы обратной положительной связи, встроенные В систему поддержания бодрствования [6, 8]. Эти нейроны главный тормозной выделяют нейромедиатор центральной нервной системы – гамма-аминомасляную кислоту. Локализуются они в большей степени в ретикулярной части черной субстанции. Когда происходит малейшее ослабление активности активирующих нейронов, сразу тормозные нейроны, же включаются

приводящие к еще большему ослаблению активности. В таком случае, отсутствие единого «центра сна» делает систему его организации более надежной, независимой, устойчивой к каким-либо нарушениям его функционирования. В течение некоторого времени, по нисходящей, данный процесс развивается до тех пор, пока не сработает определенный триггер, приводящий к перестройке системы в другое состояние — парадоксального сна или бодрствования. Этот процесс отражается по ходу 90-минутного цикла сна человека, когда можно наблюдать на электроэнцефалограмме смену картин в электрической активного головного мозга.

Сон традиционно детерминируют как поведенческое состояние всего организма. Данные полисомнографических сигналов получают с определенных участков на поверхности головы и используются для выделения фаз сна. Одновременно с электроэнцефалограммой записывается электроокуло- или электромиограмма, которые позволяют определить фазу быстрого сна. Так же, для того, чтобы отличить первую стадию сна от бодрствования, возможно применение электроокулографии В сочетании c данных записью электроэнцефалограммы, полученной от электродов, расположенных на определенной (чаще затылочной) области. Топографическая неоднородность и постепенность изменений паттернов различных электроэнцефалограмм, записанных с локализованных на разны участках головы электродов, указывает на тот факт, что не всегда сон начинается во всех участках коры головного мозга одновременно [9]. К тому же, такие состояния, как бодрствование и сон не являются взаимоисключающими процессами, так как волновые паттерны электроэнцефалограммы, характерные для каждого из них, могут существовать достаточно продолжительный период времени.

От всего периода ночного сна, фаза медленного сна составляет в норме у взрослого человека до 80%. В эту фазу происходит снижение температуры тела на несколько десятых градуса, уменьшение частоты дыхательных движений и сердечных сокращений, снижение артериального давления. При этом отсутствуют быстрые движения глаз, но мышечный тонус сохранен. Процессы

восстановления, происходящие в фазу медленного сна, включают синтез белков, нуклеиновых кислот, фосфатергических соединений, соматотропного гормона, стимулирующего рост тканей и восстановление мышц. Необходимо отметить, что в этих условиях анализ мозгом информации не прекращается, а трансформируется: мозг переходит от обработки экстероцептивных импульсов к обработке интероцептивных [10, 11]. Это говорит о том, что значение фазы медленного сна состоит не только в восстановлении мозгового гомеостаза и других функций организма, но еще и в оптимизации процессов управления внутренними органами.

Для парадоксальной фазы сна, или быстрого сна, характерно угнетение функции терморегуляторных механизмов, реакции дыхательного центра на парциальное давление углекислого газа в крови, что, в свою очередь, приводит к нерегулярному и неритмичному временами дыханию, нестабильности частоты пульса и показателей артериального давления. В эту фазу происходит реорганизация полученной во время бодрствования информации.

Какая же продолжительность сна необходима человеку для оптимальной когнитивной и физической деятельности? Согласно результатам крупнейшего в мире исследования сна, проведенного специалистами из Университета Западного Онтарио, человек должен спать каждую ночь на протяжении минимум семи часов. Кроме того, исследование показало, что слишком большое количество сна так же плохо для познавательной способности человека, как и его нехватка [14].

Тогда как недостаток сна влияет на человеческий мозг? В отличие от преимуществ сна, рамки изучения влияния потери сна относительно отсутствуют. Важно отметить, что последствия депривации сна не просто отражают отсутствие сна и приписываемые ему преимущества; скорее, они отражают последствия нескольких дополнительных факторов, включая длительное бодрствование.

Депривация сна вызывает ряд двунаправленных изменений в мозговой активности и связности, в зависимости от конкретных когнитивных или

аффективных моделей поведения. Изменения в мозговой активности наблюдаются при усреднении по сеансу выполнения задачи и во время выполнения задачи, где отмеченная нестабильность мозговой сети, повидимому, является нейронным признаком депривации сна [14].

Не все изменения в функции мозга, связанные с потерей сна, являются дезадаптивными и, таким образом, представляют собой недостатки, поскольку некоторые предсказывают устойчивость поведенческих способностей и поэтому являются компенсаторными. Эти фундаментальные научные открытия дают причинно-механистическое понимание некоторых неврологических и психиатрических расстройств, при которых нарушения сна и когнитивных функций или эмоций являются весьма коморбидными, что указывает на то, что вмешательство во сне является недооцененной и новой целью для лечения и/или профилактики заболеваний [15]. Надежные нейронные и поведенческие фенотипы могут служить основой для обсуждения рекомендаций в отношении сна как для государственной, так и для профессиональной политики в области здравоохранения, особенно в свете эскалации эпидемии потери сна, широко распространенной в промышленно развитых странах.

Регулярное недосыпание (меньше 6 часов в сутки) способно привести к таким же последствиям, которые возникают при злоупотреблении алкоголем [16]. Страдает концентрация внимания и способность выполнять определенные задачи. Непродолжительная депривация сна сопровождается развитием приступов головной боли, головокружения, уменьшению способности к концентрации и мышлению, замедлению времени реакции, нарушению памяти, возникновению частых приступов депрессии, обморочного состояния, вплоть до потери чувства реальности.

С точки зрения нейрофизиологии такое пагубное влияние хронического недосыпания объясняется усилием процессов разрушения астроцитами вновь образующихся синапсов между нейронами коры головного мозга. Чрезмерная активность этих клеток может привести к негативным последствиям, таким, как неврологические расстройства, в том числе, болезнь Альцгеймера.

Актуальность. Таким образом, учитывая то, что здоровый сон — один из фундаментальных факторов человеческого здоровья, психофизического и социального благополучия, особенно актуальным становится вопрос о режиме и качестве сна студентов, как у социальной группы, склонной к нарушениям сна ввиду учебной нагрузки. Особенную актуальность проблема приобретает среди обучающихся медицинских ВУЗов из-за специфики обучения медицинским специальностям.

Целью настоящего исследования является изучение влияния сна на психофизическую и умственную активность студентов стоматологического факультета.

Задачами нашего исследования стали:

- 1) разработка анкеты для опроса студентов;
- 2) сбор информации о режиме и качестве сна студентов посредством анкетирования;
- 3) анализ полученных данных для заключения о качестве сна студентовстоматологов.

Материалы и методы: посредством онлайн-анкетирования студентов на платформе Google Forms нами было опрошено 90 студентов (62 девушки и 28 юношей) стоматологического факультета Института «Медицинская академия имени С.И. Георгиевского» ФГАОУ ВО «КФУ им. В.И. Вернадского», средний возраст которых составил 19,5 лет.

Для опроса использовалась специально разработанная нами анкета, включающая вопросы о возрасте и поле респондентов, продолжительности и качестве их сна, об изменениях сна студентов во время дистанционного обучения. Анализ результатов осуществлялся с помощью методов описательной статистики.

Результаты исследований: нами выявлено, что большая часть студентов спит по 6-7 часов сутки (65% респондентов), что в принципе соответствует суточной норме сна для взрослого человека; меньше 6 часов в сутки спят 20% отвечающих. Остальные респонденты указали, что часы их сна разнятся и

изменяются время от времени. При этом, согласно опросу, 69,2% студентов не высыпаются, в отличие от 30,8% отвечающих, указавших, что они высыпаются.

В связи с пандемией коронавируса, высшие учебные заведения России были вынуждены изменить привычную очную форму обучения на дистанционную. Резкий переход на онлайн-обучение не мог не повлиять на физическое и психологическое здоровье студентов, которым пришлось адаптироваться к новым условиям получения образования. Именно это побудило нас провести опрос о том, как повлияло введение дистанционного формата обучения на сон студентовстоматологов.

Согласно проведённому нами опросу, с введением дистанционной формы обучения у студентов-медиков качество и количество сна изменилось: 83,5% студентов стали спать больше, 7,7% студентов отметили, что стали спать меньше; 8,8% респондентов никаких изменений в своём режиме при дистанционном обучении не наблюдали. Однако вместе с тем большинство студентов при таком режиме (85% анкетируемых) стали засыпать позже и с большим затруднением, что вероятно связано с большим количеством времени, проводимом за гаджетами (61,1% студентов указали, что время, которое они проводят за компьютерами, ноутбуками, телефонами и т. д. значительно увеличилось с наступлением дистанционного режима образования).

Заключение. В современном мире многочисленные эпидемиологические исследования показали увеличение доли взрослых и подростков, которые сообщают о сокращении длительности сна. Детерминантами короткой продолжительности сна являются различными поведенческими причинами, связанными с профессиональными обязанностями образом жизни (сменная работа, транспорт, способствующими пассивному проведению времени), формами проведения досуга (использование Интернета, мобильных телефонов и видеоигр), а также многочисленными клиническими причинами: бессонница, нарушения дыхания во сне, синдром беспокойных ног, тревожные состояния и расстройства, нарастающие в том числе и из-за обстановки, связанной с пандемией COVID-19.

Образовательная среда за короткое время была преобразована цифровизацией, что стало дополнительным факторов стресса для студентов. Такие изменения сильно повлияли не только на критерии оценки работы студентов, но и на ведение отчетной документации и психологическое состояние преподавателей и самих студентов.

Немаловажно и то, что во время дистанционного обучения накапливается очень много информации и отвлекающих элементов, таких как звонки и сообщения, которые мешают и становятся источником дополнительного раздражения.

Несмотря на то, что в современных условиях невозможно остаться в стороне от процессов цифровизации, а цифровая среда дистанционного обучения обеспечивает внедрение индивидуальной траектории для каждого студента, многим все еще сложно перейти на такую форму обучения, что и обуславливает полученные нами результаты (более поздние засыпания, а также длительное засыпание).

К тому же нельзя не отметить, что студенты в целом являются социальной группой, имеющей множество факторов риска, способствующих развитию заболеваний.

У студентов медицинских профилей эти риски выше, так как они вынуждены учиться в ещё более жестком режиме по сравнению со своими сверстниками, получающими образование по другим специальностям.

Результаты некоторых исследований показали, что здоровье студентов за период дистанционного обучения значительно ухудшилось: были отмечены головные боли при работе за компьютерами, частое напряжение в глазах, снижение остроты зрения, нарушение сна, прибавку в весе, боли при долгой сидячей работе в опорно-двигательном аппарате [12].

Со стороны эмоциональных аспектов адаптации студентов к дистанционному формату обнаружено, что средний групповой показатель по признакам и симптомам стресса составляет 15,8; а это в свою очередь свидетельствует о достаточно выраженном эмоциональном и физиологическом

напряжении организма, возникшим в ответ на сильный стресс-фактор (резкий переход с одной системы обучения на другую) [7]. В этих условиях отсутствие изменений в количестве и качестве сна просто невозможны.

В данной работе было освещено влияние сна на психофизическую и умственную активность человека, была показана важнейшая роль продолжительности и качества сна на здоровье и производительность человеческого организма. Есть множество факторов, которые порождаются ритмом жизни современного общества, оказывающих негативное влияние на процесс сна.

В связи с этим рекомендуется проведение дальнейших исследований в области сомнологии и нейрофизиологии. Ведь остается еще множество вопросов, над которыми необходимо провести работу. А именно, продолжение исследований по картированию нервных центров коры головного мозга, отвечающих за состояния сна и бодрствования, коррекция социальных и экономических негативных воздействий на здоровье современного человека на глобальном уровне, массовое просвещение общественности о последствиях пренебрежения здоровым сном.

Список источников:

- 1. Бартфилд П. и др. Сигнатура сознания в динамике состояния мозга в состоянии покоя // Proc. Natl Acad. Sci. США.- 2015. №112. C.887-892.
- 2. Вэнг Л. и др. Нарушение структурной связи между базальными ганглиями, таламусом и лобной корой у пациентов с нарушениями сознания // Cortex. 2017. №90. С.71-87.
- 3. Демерци А. и др. Человеческое сознание поддерживается динамическими сложными моделями координации сигналов мозга // Sci. Adv. 2019. №5. C.1-12.
- 4. Кархарт-Харрис Р.Л. и др. Энтропийный мозг: теория состояний сознания, основанная на исследованиях нейровизуализации с использованием психоделических препаратов // Front. Hum. Neurosci. 2014. №8. С.20.

- 5. Кархарт-Харрис Р.Л. Энтропийный мозг // Neuropharmacology. 2018. №142. С.167-178.
- 6. Казали А.Г. и соавт. Теоретически основанный индекс сознания, независимый от сенсорной обработки и поведения // Sci. Перев. Med. 2013. №5. С.1-10.
- 7. Кулешова О.М., Баринова О.Г. Исследование признаков и симптомов стресса у студентов-первокурсников медицинского вуза в условиях дистанционного обучения и самоизоляции // Scientist. 2020. №3 (13).
- 8. Луппи А.И., Крейг М.М., Паппас И. и др. Сознательно-специфические динамические взаимодействия интеграции мозга и функционального разнообразия // Nat Commun. 2019. №10. C.4616.
- 9. Мартуцци Р., Рамани Р., Цю М., Радживан Н., Констебл Т. Функциональная связность и изменения исходного состояния мозга у человека // Neuroimage. 2010. №49. С.823-834.
- 10. Маттар М.Г., Коул М.В., Томпсон-Шилл SL, Бассетт Д.С. Функциональная картография когнитивных систем // PLoS Comput. Biol. 2015. №11. C.e1004533.
- 11. Мун Дж. Й., Ли Ю.Ц., Блейн-Морэ С., Машур Г.А. Общая взаимосвязь глобальной топологии, локальной динамики и направленности в крупных мозговых сетях // PLoS Comput. Biol. 2015. №11. C.e1004225.
- 12. Оидзуми М., Альбантакис Л., Тонони Г. От феноменологии к механизмам сознания: интегрированная теория информации // PLoS Comput. Biol. 2014. №10. C.e1003588.
- 13. Пономарев Д.Н., Недюдина Е.И., Желтышева А.Ю. Влияние дистанционного обучения на здоровье студентов ПГМУ им. ак. Е. А. Вагнера // Сб. статей Международной научно-практической конференции «Наука и Просвещение». 2020
- 14. Рубинов М., Спорнс О. Комплексные сетевые измерения связности мозга: способы использования и интерпретации // Neuroimage. 2010. №52. C.1059-1069.

- 15. Тогноли Э., Келсо Ю.А. Метастабильный мозг // Neuron. 2014. №81. С.35-48.
- 16. Фукусима М. и соавт. Структурно-функциональные отношения во время сегрегированных и интегрированных состояний сети функциональной связности мозга человека // Brain Struct. Funct. 2018. №223. С.1091-1106.
- 17. Черниговская Т.В. Мозг и язык: врожденные модули или обучающаяся сеть? // Вестник Российской академии наук. 2010. №5-6. С.461-465
- 18. Шайн Дж.М. и др. Динамика функциональных сетей мозга: состояния интегрированной сети при выполнении когнитивных задач // Neuron. 2016. №92. С.544-554.